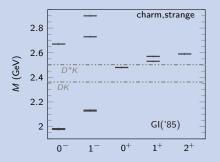
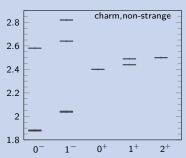


# **Heavy mesons**


Some theoretical ideas

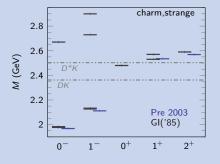

Miguel Albaladejo (JLab)

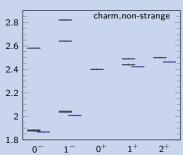
Snowmass meeting, September 23, 2020

## Quark model in the singly heavy sector

 Quark model cn̄ is still our baseline: "In this paper we present the results of a study of light and heavy mesons in soft QCD. We have found that all mesons-from the pion to the upsilon-can be described in a unified framework."
 [Godfrey, Isgur, PR,D32,189('85)]





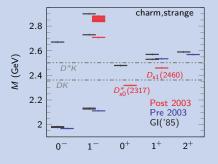


• The discovery of  $D_{s0}^*(2317)$  in 2003 (and  $D_{s1}(2460)$  later on) is "equivalent" to the discovery of X(3872) in charmonium-like system.

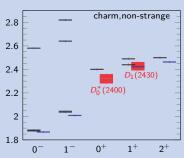
[BABAR, PRL,90,242001('03)] [CLEO, PR,D68,032002('03)]

## Quark model in the singly heavy sector

 Quark model cn̄ is still our baseline: "In this paper we present the results of a study of light and heavy mesons in soft QCD. We have found that all mesons-from the pion to the upsilon-can be described in a unified framework."
 [Godfrey, Isgur, PR,D32,189('85)]







• The discovery of  $D_{s0}^*(2317)$  in 2003 (and  $D_{s1}(2460)$  later on) is "equivalent" to the discovery of X(3872) in charmonium-like system.

[BABAR, PRL,90,242001('03)] [CLEO, PR,D68,032002('03)]

## Quark model in the singly heavy sector

 Quark model cn̄ is still our baseline: "In this paper we present the results of a study of light and heavy mesons in soft QCD. We have found that all mesons-from the pion to the upsilon-can be described in a unified framework."
 [Godfrey, Isgur, PR,D32,189('85)]





• The discovery of  $D_{s0}^*(2317)$  in 2003 (and  $D_{s1}(2460)$  later on) is "equivalent" to the discovery of X(3872) in charmonium-like system.

[BABAR, PRL,90,242001('03)] [CLEO, PR,D68,032002('03)]

## Theoretical interpretations

#### $c\bar{q}$ states

Dai et al. Phys. Rev. D 68, 114011 (2003) Narison, Phys. Lett. B 605, 319 (2005) Bardeen et al., Phys. Rev. D 68, 054024 (2003) Lee et al., Eur. Phys. J. C 49, 737 (2007) Wang, Wan, Phys. Rev. D 73, 094020 (2006)

#### Pure tetraquarks

Cheng, Hou, Phys. Lett. B **566**, 193 (2003) Terasaki, Phys. Rev. D **68**, 011501 (2003) Chen, Li, Phys. Rev. Lett. **93**, 232001 (2004) Maiani *et al.*, Phys. Rev. D **71**, 014028 (2005) Bracco *et al.*, Phys. Lett. B **624**, 217 (2005) Wang, Wan, Nucl. Phys. A **778**, 22 (2006)

#### $c\bar{q}+$ tetraquarks or meson–meson

Browder *et al.*, Phys. Lett. B **578**, 365 (2004) van Beveren, Rupp, Phys. Rev. Lett. **91**, 012003 (2003)

#### Heavy-light meson-meson molecules

Barnes *et al.*, Phys. Rev. D **68**, 054006 (2003) Szczepaniak, Phys. Lett. B **567**, 23 (2003) Kolomeitsev, Lutz, Phys. Lett. B **582**, 39 (2004) Hofmann, Lutz, Nucl. Phys. A **733**, 142 (2004) Guo *et al.*, Phys. Lett. B **641**, 278 (2006)

Gamermann et al., Phys. Rev. D 76, 074016 (2007)

Faessler et al., Phys. Rev. D 76, 014005 (2007)

Flynn, Nieves, Phys. Rev. D 75, 074024 (2007)

# (Some) attempts to explain $D_{s0}^*(2317)$ as a $c\bar{s}$ state

[Ortega et al., PR,D94,074037('16) (and references therein)]

- $\bullet$  Problem: original Quark Model prediction mass is  $\sim$  150 MeV above experimental one.
- 1-loop correction to OGE potential  $(\mathcal{O}(\alpha_s^2))$  reduces the mass to 2383 MeV, much closer to the experimental one.
- $^3P_0$  mechanism to couple  $c\bar{s}$  states to DK meson-pairs,  $P_{DK}\sim 30\%$ .
- Much better situation, but:
  - Still above DK threshold
  - ullet This mechanism only affects the  $0^+$  sector, still problems with  $1^+$
  - Coupling to DK is included, but no DK "dynamics"

#### Meanwhile, in the lattice...

• Masses larger than the physical ones if using  $c\bar{s}$  interpolators only.

Bali, Phys. Rev. D **68**, 071501 (2003) UKQCD Collab., Phys. Lett. B **569**, 41 (2003)

• Masses consistent with  $D_0^*(2400)$  and  $D_{s0}^*(2317)$  obtained when "meson-meson" interpolators are employed.

Mohler, Prelovsek, Woloshyn, Phys. Rev. D 87, 034501 (2013)
Mohler et al., Phys. Rev. Lett. 111, 222001 (2013)

• Close to the physical point:

- RQCD Collab., Phys. Rev. D 96, 074501 (2017)
- More complete studies from the HadSpec collaboration:
  - $D\pi$ ,  $D\eta$  and  $D_s\bar{K}$  coupled-channel scattering. A bound state with large coupling to  $D\pi$  is identified with  $D_0^*(2400)$ .

HadSpec Collab., JHEP **1610**, 011 (2016)

- $D_{s0}^*(2317)$ : A bound state is found in the *DK* channel, with:
  - $\Delta E = 25(3) \text{ MeV } (m_{\pi} = 391 \text{ MeV})$
  - $\Delta E = 57(3) \text{ MeV } (m_{\pi} = 239 \text{ MeV})$
  - $\bullet$  Compare with experimental,  $\Delta E \simeq$  45 MeV (the dependence on  $m_\pi$  does not need to be monotonic!

HadSpec Collab., 2008.06432

# Lightest 0<sup>+</sup> open-charm situation and puzzles

- $D_{s0}^*(2317)$  (S, I) = (1, 0)  $M_{D_{s0}^*(2317)} = 2317.8 \pm 0.5$  MeV (PDG)
- $D_0^*(2400)$  (S, I) = (0, 1/2) Not so well stablished:

```
Collab. M (MeV) \Gamma/2 (MeV) Ref.

Belle 2308 \pm 36 138 \pm 33 Phys. Rev. D 69, 112002 (2004)

BaBar 2297 \pm 22 137 \pm 25 Phys. Rev. D 79, 112004 (2009)

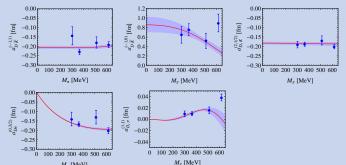
FOCUS 2407 \pm 41 120 \pm 40 Phys. Lett. B 586, 11 (2004)

LHCb 2360 \pm 33 128 \pm 29 Phys. Rev. D 92, 032012 (2015) (B^0 \rightarrow \bar{D}^0 \kappa^+ \pi^-)

LHCb 2349 \pm 7 128 \pm 29 Phys. Rev. D 92, 012012 (2015) (B^0 \rightarrow \bar{D}^0 \pi^+ \pi^-)
FOCUS 2403 \pm 38 142 \pm 21 Phys. Lett. B 586, 11 (2004)
```

- PDG averages:
  - $D_0^{*0}(2400)$ :  $M = 2349 \pm 7 \text{ MeV}$
  - $D_0^{*+}(2400)$ :  $M = 2300 \pm 19$  MeV

#### Three puzzles

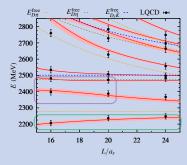

- Mass problem: Why are  $D_{s0}^*(2317)$  and  $D_{s1}(2460)$  masses much lower than the CQM expectations?
- Splittings: Why  $M_{D_{s1}(2460)} M_{D_{s0}^*(2317)} \simeq M_{D^*} M_D$  (within a few MeV)?
- Hierarchy: Why  $M_{D_0^*(2400)} > M_{D_0^*(2317)}$ , i.e., why  $c\bar{u}$ ,  $c\bar{d}$  heavier than  $c\bar{s}$ ?

# $D\pi$ , $D\eta$ , $D_sK$ scattering amplitudes

- Coupled channel T-matrix:  $D\pi$ ,  $D\eta$ ,  $D_s\overline{K}$  scattering  $[J^P=0^+, (S,I)=(0,\frac{1}{2})]$ .
- Unitarity:  $T^{-1}(s) = V^{-1}(s) G(s)$
- Chiral symmetry used to compute the  $\mathcal{O}(p^2)$  potential:

$$f^2V_{ij}(s,t,u) = C_{\text{LO}}^{ij}\frac{s-u}{4} + \sum_{a=0}^{5} h_a C_a^{ij}(s,t,u)$$
 Guo et al., Phys. Lett. B 666, 251 (2008) Liu et al., Phys. Rev. D 87, 014508 (2013)

- Free parameters previously fixed, not fitted (predictions!):
- Fitted to reproduce scattering lengths obtained in a LQCD simulation




M. Albaladeio (JLab)

Heavy mesons: some theoretical ideas

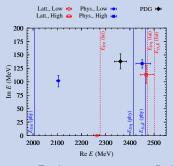
Snowmass meeting, September 23, 2020

## Comparison with LQCD energy levels



| M (MeV) | Latt. | Phys. |
|---------|-------|-------|
| $\pi$   | 391   | 138   |
| K       | 550   | 496   |
| $\eta$  | 588   | 548   |
| D       | 1886  | 1867  |
| $D_s$   | 1952  | 1968  |

•  $E_n(L)$  are provided for  $D\pi$ ,  $D\eta$ ,  $D_s\bar{K}$  in a recent LQCD simulation.


[G. Moir et al., JHEP 1610, 011 (2016)]

 Red Bands: Our amplitude in a finite volume.

[M. A. et al., Phys. Lett. B 767, 465 (2017)]

- Recall, no fit is performed.
- E > 2.7 GeV is beyond the range of validity for our T-matrix.
- Level below threshold, associated with a bound state.
- Second level has large shifts w. r. t. thresholds, non-interacting energy levels:
  - Strong movement of the amplitude.
  - Check if there is another state (resonance).

# Spectroscopy: two-states for $D_0^*(2400)$



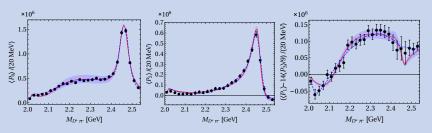
| Meson<br>Masses | M (MeV)             | Γ/2 (MeV)         | RS    | $ g_{D\pi} $        | $ g_{D\eta} $       | $g_{D_S\bar{K}}$     |
|-----------------|---------------------|-------------------|-------|---------------------|---------------------|----------------------|
|                 | $2264^{+\ 8}_{-14}$ | 0                 | (000) | $7.7^{+1.2}_{-1.1}$ | $0.3^{+0.5}_{-0.3}$ | $4.2^{+1.1}_{-1.0}$  |
| lattice         | $2468^{+32}_{-25}$  | $113^{+18}_{-16}$ | (110) | $5.2^{+0.6}_{-0.4}$ | $6.7^{+0.6}_{-0.4}$ | $13.2^{+0.6}_{-0.5}$ |
|                 | $2105^{+6}_{-8}$    | $102^{+10}_{-12}$ | (100) | $9.4^{+0.2}_{-0.2}$ | $1.8^{+0.7}_{-0.7}$ | $4.4^{+0.5}_{-0.5}$  |
| physical        | $2451^{+36}_{-26}$  | $134^{+7}_{-8}$   | (110) | $5.0^{+0.7}_{-0.4}$ | $6.3^{+0.8}_{-0.5}$ | $12.8^{+0.8}_{-0.6}$ |

- We also study DK,  $D_s\eta$ , (S,I)=(1,0)  $D_{s0}^*(2317)$ :  $M=2315_{-28}^{+18}$  MeV.
- For lattice masses, we find a bound state (000) and a resonance (110)
- For physical masses:
  - ullet The bound state evolves into a resonance (100) above  $D\pi$  threshold.
  - The resonance varies very little, and is still a resonance (110).
  - For both states, the coupling pattern is similar.
- PDG includes only one resonance, "suspiciously" lying between both.

## Comparison with experimental data: $B^- o D^+ \pi^- \pi^-$

Du, MA, Fernández-Soler, Guo, Hanhart, Meißner, Nieves, Yao, PR,D98,094018 ('18)

- $A(s,z) = A_0(s) + \sqrt{3}A_1(s)P_1(z) + \sqrt{5}A_2(s)P_2(z) + \dots$
- P-, D-wave as in LHCb paper
- *S*-wave parameterization:


$$A_{0}(s) = \frac{B^{-}}{A} \underbrace{A}_{D^{+}}^{\pi^{-}} + \underbrace{B^{-}}_{A, B} \underbrace{A, B}_{D, D_{s}} \underbrace{\tau_{ij}}_{\pi^{-}} \underbrace{\tau_{ij}}_{\pi^{-}}$$

$$\mathcal{A}_0(s) = \mathbf{A} \left\{ E_{\pi} \left[ 2 + G_1(s) \left( \frac{5}{3} T_{11}^{1/2}(s) + \frac{1}{3} T^{3/2}(s) \right) \right] + \frac{1}{3} E_{\eta} G_2(s) T_{21}^{1/2}(s) + \sqrt{\frac{2}{3}} E_{\bar{K}} G_3(s) T_{31}^{1/2}(s) \right\} + \mathbf{B} E_{\eta} G_2(s) T_{21}^{1/2}(s),$$

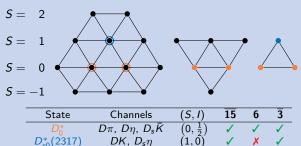
• Angular moments:  $\langle P_\ell \rangle(s) = \int dz \, |\mathcal{A}(s,z)|^2 \, P_\ell(z)$   $\langle P_0 \rangle \propto |\mathcal{A}_0|^2 + |\mathcal{A}_1|^2 + |\mathcal{A}_2|^2 \;, \qquad \langle P_2 \rangle \propto \frac{2}{5} \, |\mathcal{A}_1|^2 + \frac{2}{7} \, |\mathcal{A}_2|^2 + \frac{2}{\sqrt{5}} \, |\mathcal{A}_0| \, |\mathcal{A}_2| \cos(\delta_0 - \delta_2) \;,$  $\langle P_{13} \rangle \equiv \langle P_1 \rangle - \frac{14}{9} \langle P_3 \rangle \propto \frac{2}{\sqrt{2}} \, |\mathcal{A}_0| \, |\mathcal{A}_1| \cos(\delta_0 - \delta_1) \;.$ 

## Comparison with experimental data: $B^- o D^+ \pi^- \pi^-$

Du, MA, Fernández-Soler, Guo, Hanhart, Meißner, Nieves, Yao, PR, D98, 094018 ('18)



- Parameters:  $B/A = -3.8 \pm 0.1$ ,  $a = 1.2 \pm 0.1$ ,  $\chi^2/\text{d.o.f.} = 1.8$
- — This work. - LHCb. Bands: fit uncertainty
- Very good agreement with data & with LHCb fit
- Rapid movement in  $\langle P_{13} \rangle$  [no  $D_2(2460)$ ] between 2.4 and 2.5 GeV. Related to  $D\eta$  and  $D_s \bar{K}$  openings.
- Recall: these are the amplitudes with two states in the  $D_0^*$  (2400) region, and no fit of the T-matrix parameters is done.


## SU(3) light-flavor limit

[M. A. et al., Phys. Lett. B 767, 465 (2017)]

- SU(3) flavor limit:  $m_i \rightarrow m = 0.49$  GeV,  $M_i \rightarrow M = 1.95$  GeV.
- Irrep decomposition:  $\overline{\mathbf{3}} \otimes \mathbf{8} = (15 \oplus \mathbf{6} \oplus \overline{\mathbf{3}})$ . T and V can be diagonalized:

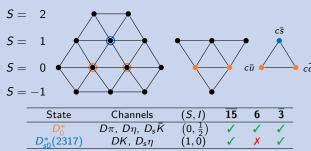
$$V_d(s) = D^{\dagger}V(s)D = \operatorname{diag}\left(V_{\overline{15}}(s) , V_6(s) , V_{\overline{3}}(s)\right) = \underbrace{A(s)\operatorname{diag}\left(1, -1, -3\right)},$$

•  $\overline{\bf 15}$  is repulsive. **6** and  $\overline{\bf 3}$  are attractive. "Curiously",  $\overline{\bf 3}$  admits a  $c\overline{q}$  interpretation.



 $\bullet$  A recent LQCD calculation by the HadSpec Collaboration finds a similar picture.

[Hadron Spectrum Collab., 2008.06432]


## SU(3) light-flavor limit

[M. A. et al., Phys. Lett. B 767, 465 (2017)]

- SU(3) flavor limit:  $m_i \rightarrow m = 0.49$  GeV,  $M_i \rightarrow M = 1.95$  GeV.
- Irrep decomposition:  $\overline{\mathbf{3}} \otimes \mathbf{8} = (\overline{\mathbf{15} \oplus \mathbf{6} \oplus \overline{\mathbf{3}}})$ . T and V can be diagonalized:

$$V_d(s) = D^{\dagger}V(s)D = \operatorname{diag}\left(V_{\overline{15}}(s) , V_6(s) , V_{\overline{3}}(s)\right) = \underbrace{A(s)\operatorname{diag}\left(1, -1, -3\right)},$$

•  $\overline{\bf 15}$  is repulsive. **6** and  $\overline{\bf 3}$  are attractive. "Curiously",  $\overline{\bf 3}$  admits a  $c\overline{q}$  interpretation.



• A recent LQCD calculation by the HadSpec Collaboration finds a similar picture.

[Hadron Spectrum Collab., 2008.06432]

# Conclusions about $D_0^*(2400)$ , $D_{s0}^*(2317)$

- The D<sub>0</sub>\*(2400) structure is actually produced by two different states (poles), together with complicated interferences with thresholds
- This two-state structure for  $D_0^*(2400)$  was previously reported:

```
Kolomeitsev, Lutz, Phys. Lett. B 582, 39 (2004)
Guo et al., Phys. Lett. B 641, 278 (2006)
Guo et al., Eur. Phys. J. A 40, 171 (2009)
```

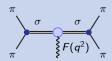
- The amplitudes containing these two-poles are compatible with available LQCD simulations and experimental data
- This picture for  $D_0^*(2400)$  and  $D^*(2317)$  nicely solves simultaneously all the puzzles.

## Open questions for the community

 Need of more collaboration between (and simultaneous use of!) different "subcommunities": LQCD, molecular/tetraquarks/QM models...

#### Spectroscopy, mixing:

Specific example of  $D_{s0}^*(2317)$ , take for granted the presence of a CQM  $c\bar{s}$  state. Theoretical possibilities:


- Genuine cs, (very) renormalized by DK threshold. Or renormalized by DK interactions themselves?
- Or, there is a S=1, I=0 state coming from DK interactions in addition to the  $c\bar{s}$  state. If so, where are those two poles? Which is which?

#### Nature/size:

• Can we address the question of 4q,  $q\bar{q}$ , molecule based on the size of the object?







- For  $\pi\pi$  scattering,  $\sigma$  meson: MA, Oller, PR,D86,034003('12)
  - $\sqrt{\langle r^2 \rangle_{\sigma}^5} \simeq 0.44 \text{ fm}$
  - $\sqrt{\langle r^2 \rangle_{\pi}^S} \simeq 0.81 \text{ fm}$
- Perhaps only theoretical? Future lattice QCD calculations?

Briceño et al., PR,D100,034511('19); PR,D100,114505('19), ...



# **Heavy mesons**

Some theoretical ideas

Miguel Albaladejo (JLab)

Snowmass meeting, September 23, 2020

# Connecting SU(3) and physical limits Riemann sheets

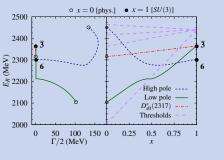
#### Riemann sheets:

#### *SU*(3) limit:

$$\mathcal{G}_{ii}(s) o \mathcal{G}_{ii}(s) + i rac{p_i(s)}{4\pi\sqrt{s}} \; \xi_i \; m_i = m_i^{
m phy} + \varkappa (m - m_i^{
m phy}) \; , \; (m = 0.49 \; {
m GeV}) \; , \ M_i = M_i^{
m phy} + \varkappa (M - M_i^{
m phy}) \; , \; (M = 1.95 \; {
m GeV}) \; .$$

- Physical case (x = 0): RS specified by  $(\xi_1 \xi_2 \xi_3)$ ,  $\xi_i = 0$  or 1.
- SU(3) symmetric case (x=1): all channels have the same threshold, so there are only two RS (000) and (111).
- To connect the lower pole with the T<sub>6</sub> virtual state,

$$\xi_3 = x$$
  $(1, 1, 0) \rightarrow (1, 1, x)$ 


• To connect the lower pole with the  $T_{\overline{3}}$  bound state,

$$\xi_1 = 1 - x$$
  $(1,0,0) \rightarrow (1 - x,0,0)$ 

## **(II)**

Connecting physical (x = 0) and flavor SU(3) (x = 1) limits:

$$m_i = m_i^{\text{phy}} + x(m - m_i^{\text{phy}}) , \qquad (m = 0.49 \text{ GeV}) ,$$
  $M_i = M_i^{\text{phy}} + x(M - M_i^{\text{phy}}) , \qquad (M = 1.95 \text{ GeV}) .$ 



- The high D<sub>0</sub>\* connects with a 6 virtual state (unph. RS, below threshold).
- The low  $D_0^*$  connects with a **3** bound state (ph. RS, below threshold).
- The  $D_{s0}^*(2317)$  also connects with the  $\overline{\bf 3}$  bound state.



- The low  $D_0^*$  and the  $D_{s0}^*(2317)$  are SU(3) flavor partners.
- This solves the "puzzle" of  $D_{s0}^*(2317)$  being lighter than  $D_0^*(2400)$ : it is not, the

lower  $D_0^*$  pole (M=2105 MeV) is lighter. M. Albaladejo (JLab) Heavy mesons: some theoretical ideas

# Form factors in semileptonic $D o \pi ar{\ell} u_\ell$

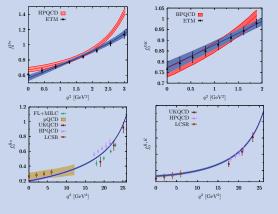
MA, P. Fernández-Soler, F.-K. Guo, J. Nieves, D.-L. Yao, in preparation

General definitions:

$$\frac{\mathrm{d}\Gamma(D\to\pi\bar\ell\nu_\ell)}{\mathrm{d}q^2} = \frac{G_F^2}{24\pi^3} |\vec p_\pi|^3 |V_{cd}|^2 |f_+(q^2)| \ . \qquad [q^2=0:f_+(0)=f_0(0)]$$

$$\langle \pi(p') | \bar{q} \gamma^{\mu} Q | D(p) \rangle = f_{+}(q^{2}) \left[ \Sigma^{\mu} - \frac{m_{D}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu} \right] + f_{0}(q^{2}) \frac{m_{D}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu} ,$$

• "Isospin" form factors, related to  $D\pi$ ,  $D\eta$ ,  $D_s\bar{K}$  scattering:


$$\mathcal{F}^{(0,1/2)}(s) \equiv \left( egin{array}{c} -\sqrt{rac{3}{2}} f_0^{D^0 o \pi^-}(s) \ -f_0^{D^+ o \eta}(s) \ -f_0^{D^+_s o K^0}(s) \end{array} 
ight) \; , \qquad {
m Im} \mathcal{F}(s) = \mathcal{T}^*(s) \Sigma(s) \mathcal{F}(s)$$

Write form factors as Omnés matrix times polynomials

$$\mathcal{F}(s) = \Omega(s) \cdot \mathcal{P}(s)$$

Polynomials fixed so as to reproduce the NLO chiral lagrangian:

$$\begin{split} \mathcal{L}_0 &= \mathit{f}_{\mathcal{P}} \left( \mathring{\mathit{m}} \mathcal{P}_{\mu}^* - \partial_{\mu} \mathcal{P} \right) \mathit{u}^{\dagger} \mathit{J}^{\mu} \;, \\ \mathcal{L}_0 &= \beta_1 \mathcal{P} \, \mathit{u} \left( \partial_{\mu} \mathit{U}^{\dagger} \right) \mathit{J}^{\mu} + \beta_2 (\partial_{\mu} \partial_{\nu} \mathcal{P}) \, \mathit{u} \left( \partial^{\nu} \mathit{U}^{\dagger} \right) \mathit{J}^{\mu} \;. \end{split}$$



- Points mostly from LQCD
- Also LCSR for  $q^2 \rightarrow 0$
- Good agreement in general
- CKM matrix can also be calculated
- Definitive results may differ...

|            | This work              | Exp.                                 |  |  |  |  |
|------------|------------------------|--------------------------------------|--|--|--|--|
|            | 4.51(51)               | 4.49(24) [Incl.]<br>3.72(19) [Excl.] |  |  |  |  |
| $ V_{cd} $ | 0.253(18)<br>0.934(35) | 0.220(5)                             |  |  |  |  |
| $ V_{cs} $ | 0.934(35)              | 0.995(16)                            |  |  |  |  |

# Why is $D_0^*$ (2400) interesting?

- Lightest systems to test ChPT with heavy mesons, besides  $D^* o D\pi$ .
- $D\pi$  interactions (where it shows up) are relevant, since  $D\pi$  appears as a final state in many reactions that are being considered now (i.e.,  $Z_c(3900)$  and  $\bar{D}^*D\pi$ )
- $D_0^*(2400)$  is important in weak interactions and CKM parameters:

Flynn, Nieves, Phys. Rev. D 76, 031302 (2007)

MA, P. Fernandez-Soler, F.K. Guo, J. Nieves, D.L. Yao, in preparation

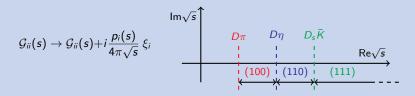
- It determines the shape of the scalar form factor  $f_0(q^2)$  in semileptonic  $D o \pi$  decays.
- Relation to  $|V_{cd}|$ :  $f_{+}(0) = f_{0}(0)$  and  $d\Gamma \propto |V_{cd}f_{+}(q^{2})|^{2}$ .
- Even more interesting: the bottom analogue  $|V_{ub}|$ .

# $D\pi$ , $D\eta$ , $D_s\overline{K}$ energy levels in a finite volume

- Periodic boundary conditions imposes momentum quantization
- Lüscher formalism:
   Commun. Math. Phys. 105, 153

Nucl. Phys. B 354, 531 (1991)

ullet In practice, changes in the T-matrix:  $T(s) 
ightarrow \widetilde{T}(s,L)$ :


Döring et al., Eur. Phys. J. A 47, 139 (2011)

$$egin{aligned} \mathcal{G}_{ii}(s) &
ightarrow \widetilde{\mathcal{G}}_{ii}(s,L) = \mathcal{G}_{ii}(s) + \lim_{\Lambda 
ightarrow \infty} \left( rac{1}{L^3} \sum_{ec{n}}^{|ec{q}| < \Lambda} I_i(ec{q}) - \int_0^{\Lambda} rac{q^2 \mathrm{d}q}{2\pi^2} \ I_i(ec{q}) 
ight) \ , \ V(s) &
ightarrow \widetilde{V}(s,L) = V(s) \ , \ T^{-1}(s) &
ightarrow \widetilde{T}^{-1}(s,L) = V^{-1}(s) - \widetilde{\mathcal{G}}(s,L) \ , \end{aligned}$$

- Free energy levels:  $E_{n \text{ free}}^{(i)}(L) = \omega_{i1}((2\pi n/L)^2) + \omega_{i2}((2\pi n/L)^2)$
- Interacting energy levels  $F_n(I) \cdot \widetilde{T}^{-1}(F^2(I)) = 0$  (noles of the  $\widetilde{T}$ -matrix) M. Albaladeio (JLab) Snowmass meeting. September 23, 20:

#### **T**-matrix and analytical continuations

- Normalization:  $-ip_{ii}(s)T_{ii}(s) = 4\pi\sqrt{s}\left(\eta_i(s)e^{2i\delta_i(s)} 1\right)$ .
- $G_{ii}(s) = G(s, m_i, M_i)$ , regularized with a subtraction constant  $a(\mu)$  ( $\mu = 1$  GeV).
- Riemann sheets (RS) denoted as  $(\xi_1\xi_2\xi_3)$ :



#### Predictions for other sectors: charm

|                                                                        |           |          |   | 0+                                                                             |                   | 1+                                   |      |
|------------------------------------------------------------------------|-----------|----------|---|--------------------------------------------------------------------------------|-------------------|--------------------------------------|------|
| (S, I) Channels                                                        | <b>15</b> | 6        |   | М                                                                              | Γ/2               | М                                    | Γ/2  |
| (- 1) () (»)-                                                          |           |          |   | (R) 2105 <sup>+6</sup> <sub>-8</sub>                                           | $102^{+10}_{-12}$ | (R) 2240 <sup>+5</sup> <sub>-6</sub> | 93+9 |
| $\left(0,\frac{1}{2}\right) D^{(*)}\pi, D^{(*)}\eta, D_s^{(*)}\bar{K}$ | 1         | <b>/</b> | 1 | (R) 2105 <sup>+6</sup> <sub>-8</sub><br>(R) 2451 <sup>+36</sup> <sub>-26</sub> | $134^{+7}_{-8}$   |                                      |      |
| $(1,0)$ $D^{(*)}K$ , $D_s^{(*)}\eta$                                   | 1         | X        |   | (B) $2315^{+18}_{-28}$                                                         |                   | (B) $2436^{+16}_{-22}$               |      |
| $(-1,0) D^{(*)}\bar{K}$                                                | X         | 1        | X | (V) 2342 <sup>+13</sup> <sub>-41</sub>                                         |                   | _                                    |      |
| $(1,1)$ $D_s^{(*)}\pi$ , $D^{(*)}K$                                    | ✓         | 1        | X | _                                                                              |                   | _                                    |      |

- HQSS relates  $0^+$   $(D_{(s)}P)$  and  $1^+$   $(D_{(s)}^*P)$  sectors: similar resonance pattern.
- ullet Two pole structure: higher  $D_1$  pole probably affected by ho channels.
- $D\bar{K}$  [0<sup>+</sup>, (-1,0)]: this virtual state (from **6**) has a large impact on the scattering length,  $a_{(-1,0)}^{D\bar{K}} \simeq 0.8$  fm. (Rest of scattering lengths are  $|a| \simeq 0.1$  fm.)

#### Predictions for other sectors: bottom

|                                                                                     |           |   |   | $0^+$                                                         |                                   | 1+                                     |                   |
|-------------------------------------------------------------------------------------|-----------|---|---|---------------------------------------------------------------|-----------------------------------|----------------------------------------|-------------------|
| (S,I) Channels                                                                      | <b>15</b> |   |   |                                                               | Γ/2                               | М                                      | Γ/2               |
| $(0,\frac{1}{2}) \ \bar{B}^{(*)}\pi, \ \bar{B}^{(*)}\eta, \ \bar{B}_s^{(*)}\bar{K}$ | 1         | ✓ | 1 | (R) 5537 <sup>+9</sup> (R) 5840 <sup>+12</sup> <sub>-13</sub> | $116_{-15}^{+14} \\ 25_{-5}^{+6}$ | (R) 5581 <sup>+9</sup> <sub>-11</sub>  | $115^{+13}_{-15}$ |
| $(1,0)$ $\bar{B}^{(*)}K$ , $\bar{B}_s^{(*)}\eta$                                    | 1         | Х | 1 | (B) 5724 <sup>+17</sup> <sub>-24</sub>                        | J                                 | (B) 5768 <sup>+17</sup> <sub>-23</sub> |                   |
| $(-1,0)\ \bar{B}^{(*)}\bar{K}$                                                      | X         | 1 | X | (V–B) t                                                       | hr.                               | (V–B) t                                | hr.               |
| $(1,1)$ $\bar{B}_s^{(*)}\pi$ , $\bar{B}^{(*)}K$                                     | 1         | ✓ | X | _                                                             |                                   | _                                      |                   |

- Heavy flavour symmetry relates charm (D) and bottom  $(\bar{B})$  sectors.
- $(0, \frac{1}{2})$ :  $B_0^*$ , two-pole pattern also observed.
- (-1,0):  $[B^{(*)}\bar{K}]$ : very close to threshold. Relevant prediction. Can be either bound or virtual (6) within our errors.
- (1,1):  $[\bar{B}_s\pi, \bar{B}K, 0^+]$ , X(5568) channel. No state is found:  $\overline{\bf 15}$  and  $\bf 6$ . If it exists, it is not dynamically generated in  $B_s\pi$ ,  $B\bar{K}$  interactions.

M. A. et al., Phys. Lett. B 757, 515 (2016); Guo et al., Commun. Theor. Phys. 65, 593 (2016)

• (1,0): Our results for  $B_{s0}^*$  and  $B_{s1}$  agree with other results from LQCD: Lang et al., Phys. Lett. B 750, 17 (2015); M. A. et al. Eur. Phys. J. C77, 170 (2017)

## Chiral dynamics and two-state structure(s)

Other famous two-poles structures rooted in chiral dynamics:

$$\Lambda(1405) [\Sigma \pi, N\bar{K}]$$

Oller, Meißner, Phys. Lett. B **500**, 263 (2001) Jido *et al.*, Nucl. Phys. A **725**, 181 (2003) García-Recio *et al.*, Phys. Lett. B **582**, 49 (2004)

Magas *et al.*, Phys. Rev. Lett. **95**, 052301 (2005)

#### $K_1(1270)$

Roca *et al.*, Phys. Rev. D **72**, 014002 (2005) Geng *et al.*, Phys. Rev. D **75**, 014017 (2007) García-Recio *et al.*, Phys. Rev. D **83**, 016007 (2011)

#### • Chiral dynamics:

- Incorporates the SU(3) light-flavor structure,
- Determines the strength of the interaction,
- Ensures lightness of Goldstone bosons, which in turn separates generating channels from higher hadronic channels.

# Conclusions of $D_0^*(2400)$ work

- We have studied  $D\pi$ ,  $D\eta$ ,  $D_s\bar{K}$  scattering  $[0^+, (S, I) = (0, \frac{1}{2})]$
- So far only one pole reported experimentally, but we have presented a strong support for the existence of two  $D_0^*$  (2400) states (different poles):
- Successful, no-fitting comparison of our T-matrix with the energy levels of a recent LQCD simulation.
- We are also able to reproduce the LHCb experimental information for  $B^- \to D^+ \pi^- \pi^-$ , also without fitting any of the T-matrix parameters.
- The lower pole ( $M=2105^{+6}_{-8}$  MeV) is lighter than  $D_{\rm s0}^*(2317)$ , solving this (apparent) puzzle.
- A SU(3) study shows that  $D_{s0}^*(2317)$  and the lower  $D_0^*(2400)$  are flavour partners: they complete a  $\overline{\bf 3}$  multiplet.
- Predictions for other sectors (heavy vectors, bottom sector) have been also given. In particular:
  - The two-pole structure is also seen in the bottom sector.
  - A very near-threshold state (bound or virtual) is predicted for BK ( $\bar{B}\bar{K}$ ).